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Abstract. By using integral representations the perturbation expansion and the Bogoliubov inequality
in nonextensive Tsallis statistics are investigated in a unified way. This procedure extends the analysis
performed recently by Lenzi et al. [Phys. Rev. Lett. 80, 218 (1998)] to the quantum (discrete spectra)
case, for q < 1. An example is presented in order to illustrate the method.
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1 Introduction

Despite the great success of the usual statistical mechan-
ics (Boltzmann-Gibbs (BG) statistics) there are situations
where its applications do not lead to reasonable conclu-
sions. A good example, among others, where the usual
statistical mechanics fails is related to the study of sys-
tems with long-range (gravitational) interactions [1–5]. On
the other hand, it was recently proposed a generalization
of the statistical mechanics [6] (Tsallis statistics) based
on the entropy(Tsallis entropy) which is labeled by a pa-
rameter q ∈ R, where q specifies the different nonexten-
sive statistics (the BG statistics is recovered in the limit
q → 1).

Motivated by the above characteristics, the Tsallis
statistics has been largely employed in the study of nonex-
tensive phenomena. For example: Lévy-type anomalous
superdiffusion [7], Euler turbulence [8], self-gravitating
systems [8–12], cosmic background radiation [13], lin-
ear response theory [14] and electron-phonon interac-
tion [15], peculiar velocities in galaxies [16] and ferrofluid-
like systems [17]. Furthermore, it was stressed by Lavenda
et al. [18] that any new entropy must have the correct con-
cavity property, and this is the case of Tsallis entropy [6].
However, the calculations employing the Tsallis statistics
are usually difficult. In order to circumvent this difficulty,
some approximate methods were developed, such as semi-
classical approximation [19], perturbation expansion [20]
and variational method [20,21]. In particular, the last two
methods presented in [20] deserve a more complete anal-
ysis because the quantum case for q < 1 has not been
analyzed yet. These difficulties have also led to the use of
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integral representations. They sensibly simplify the calcu-
lational task since they permit to connect the generalized
partition function with the usual one. Moreover, the rele-
vance of these integral representations is reinforced by the
fact that the Green functions [22] and the path integral
prescription [23] in Tsallis statistics are nicely formulated
in terms of integral representations. For example, the first
analytical solution of a quantum many-body problem was
obtained by using integral representation [24].

In this work, we employ the integral representation in
order to complete the analysis of the perturbation and
variational methods presented in reference [20], i.e., we
develop the perturbation expansion and prove the gen-
eralized Bogoliubov inequality for the quantum (discrete
spectra) case, for 0 < q < 1. These developments are pre-
sented in a unified way and, in addition, we will show that
the inequality preserves its original form also for q < 1.

This work is organized in five sections. In Section 2,
a brief introduction to the Tsallis statistics and inte-
gral representations is given. The perturbation expan-
sion is developed in Section 3. By using the results of
Section 3, the Bogoliubov inequality is demonstrated in
Section 4. Finally, in Section 5, the conclusions are given.

2 Integral representations in Tsallis statistics

The nonextensive Tsallis statistics is based on the Tsallis
entropy [6], and q-expectation value for an observable A
[6,25]. They are defined respectively by

Sq = kTr
ρ̂− ρ̂q

q − 1
, (1)
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and

〈Â〉q = Trρ̂qÂ, (2)

where ρ̂ is the density matrix, q ∈ R characterizes the de-
gree of nonextensivity and k is a positive constant. With-
out loss of generality, we can take k = 1 in the present
discussion in order to simplify the notation. Another pos-
sible choice for the q-expectation value is given by

〈〈Â〉〉q =
Trρ̂qÂ

Trρ̂q
(3)

and it was analyzed in details recently [26]. We will give
further comments on this subject in Section 4 and in the
conclusions.

The canonical distribution is obtained from the en-
tropy (1) by using the maximum entropy principle

[6,25,27], with the constraints given by (2) (with Â = Ĥ,

where Ĥ is the Hamiltonian of the system) and the nor-
malization of the density matrix ρ̂, Trρ̂ = 1. Thus, the
canonical distribution becomes

ρ̂ = [1− (1− q)βĤ ]1/(1−q)/Zq, (4)

where

Zq = Tr
[
1− (1− q)βĤ

]1/(1−q)
(5)

is the generalized partition function, and β is the inverse
of temperature T . In the energy basis, the probabilities in
the canonical distribution are

p(En) = 〈n|ρ̂|n〉 = [1− (1− q)βEn]
1/(1−q)

/Zq, (6)

where {En} and {|n〉} are the eigenvalues and the

eigenvectors of the Hamiltonian Ĥ, respectively. Then,
equation (5) can be written as

Zq =
∑
n

[1− (1− q)βEn]1/(1−q) . (7)

Furthermore, in order to obtain a consistent probabilistic
interpretation of p(En), the term [1− (1− q) βEn]1/(1−q)

is replaced by zero when 1 − (1− q) βEn ≤ 0. As ex-
ample, in the classical case this cut-off condition leads
to a restriction in the integration limits in the phase
space, and the integration region is given by the condi-
tion 1− (1− q)βH ≥ 0 (see for instance [20]).

It should be reminded that, in the usual thermodynam-
ics, there are several relations among the thermodynamic
quantities which also incorporate the multiple equivalent
representations by using the Legendre transformations,
such as the Helmholtz potential (or Helmholtz free en-
ergy or just called “free energy”) representation. On the
other hand, in thermostatistical theory, these thermody-
namic quantities are connected with the partition func-
tion. These Legendre transforms are also incorporated in
the Tsallis statistics; for instance, the free energy satis-
fies [25]

Fq = Uq − TSq = −
1

β

Z1−q
q − 1

1− q
, (8)

where Uq =
∑
n [p(En)]q En is the generalized internal

energy. Note that the previous expressions are reduced to
the usual ones in the limit case q → 1. Furthermore, the
above expressions will be useful to discuss the nonexten-
sive variational method in the next section.

In general, the calculations employing the Tsallis
statistics are more difficult than those within standard
statistics since the former contains the latter as a limit
case. Consistently, it is natural to investigate the possi-
bility of obtaining the Tsallis thermodynamic functions
from the usual ones. At the present date these investiga-
tions are based on the integral representations. Moreover,
according to what we have mentioned in the introduction,
the integral representations are useful to obtain analytical
solutions of quantum many-body problems and to formu-
late Tsallis statistics in terms of a path integral and Green
functions. In the present work, we employ the integral
representation in order to demonstrate the Bogoliubov in-
equality in the nonextensive quantum Tsallis statistics for
0 < q < 1, as well as for developing the perturbation ex-
pansion in this parameter region. In the case q > 1 we can
also work in a similar fashion.

We describe now the basic mathematical tools which
we will use in the next section. First, let us consider the
Euler definition of the Gamma function∫ ∞

0

dx xα−1 exp(−x) = Γ (α), (9)

with Re α > 0. We use the variable v defined by equality
x = [1− (1− q)βEn]v instead of x, hence the identity (9)
becomes

[1− (1− q)βEn]−α =

∫ ∞
0

dv K>(v;α) exp(−β̃En),

(10)

where

K>(v;α) =
vα−1 exp(−v)

Γ (α)
, (11)

and

β̃ = (q − 1)vβ. (12)

It is worthwhile to note that, for arbitrary positive tem-
perature (β > 0) and En ≥ 0, the above integral repre-
sentation can only be applied for q > 1.

In terms of this integral representation and using oper-
ator notation, the statistical weight and partition function
can be written as

[1− (1− q)βĤ]−1/(q−1) =∫ ∞
0

dv K>

(
v;

1

q − 1

)
exp(−β̃Ĥ), (13)

and

Zq(β) =

∫ ∞
0

dv K>

(
v;

1

q − 1

)
Z1(β̃), (14)
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where Z1 is the usual partition function. The present in-
tegral representation was first proposed by Hilhorst [28].
Certainly, this representation of Zq(β) is valid for q > 1,
too.

For q < 1, we know that there are two kinds of integral
representations: the first one was proposed by Prato [29]
and cannot be applied for q = (n − 2)/(n − 1), where n
is an integer. The second one does not have this restric-
tion [30]. In the present work we use the second integral
representation which is based on the following identity [31]

exp(ab)b1−z

2π

∫ ∞
−∞

dv
exp(ivb)

(a+ iv)z
=

1

Γ (z)
for b > 0,

= 0 for b < 0, (15)

with a > 0,Re z > 0, and −π/2 < arg(a + iv) < π/2. If

we choose a = 1, b = 1 − (1 − q)βĤ and z = α + 1 in
the above expression, the desired integral representation
is obtained, i.e.,

[1− (1− q)βĤ]α =

∫ ∞
−∞

dvK<(v;α) exp(−β̄Ĥ), (16)

where

K<(v;α) =
Γ (α+ 1)

2π

exp(1 + iv)

(1 + iv)α+1
, (17)

and

β̄ = (1− q)(1 + iv)β. (18)

Therefore, the partition function Zq can be expressed in
terms of the usual one, namely

Zq(β) =

∫ ∞
−∞

dvK<

(
v;

1

1− q

)
Z1(β̄). (19)

Note that the present integral representation incorporates
naturally the cut-off introduced for q < 1 in order to
obtain a consistent probabilistic interpretation. In other
words, the integral (15) makes all the terms equal to zero
when b = [1 − (1 − q)βEn] < 0. Consequently, the sum-
mation over [1− (1− q)βEn]α by index n can be applied
without any problem for arbitrary value of En and any
value of α. This feature constitutes an ingredient which
sensibly simplifies the calculations.

3 Nonextensive perturbation expansion

In order to develop the perturbation method in the gen-
eralized statistical mechanics we consider the following
Hamiltonian

H = H0 + λHI , (20)

where H0 typically is the Hamiltonian of a soluble model,
λHI is considered as a perturbation of H0 (H0 and HI do
not necessarily commute), and λ is the parameter which

regulates the intensity of the perturbation. The perturba-
tion expansion of the free energy in terms of λ is given by

Fq(λ) = F (0)
q + λF (1)

q +
λ2

2
F (2)
q + . . . (21)

The term F
(0)
q is the free energy for the case without per-

turbation, i.e.,

F (0)
q = Fq(0). (22)

If we take the first derivative of Fq(λ) at λ = 0, we obtain
the first-order correction to the free energy

F (1)
q =

∂Fq (0)

∂λ
= −

1

βZqq

∂Zq

∂λ

∣∣∣∣
λ=0

. (23)

The next term in the expansion of the free energy (21) is

F (2)
q =

∂2Fq (0)

∂λ2
=

[
q

βZq+1
q

(
∂Zq

∂λ

)2

−
1

βZqq

∂2Zq

∂λ2

]∣∣∣∣∣
λ=0

.

(24)

Of course, we can see from these expressions that the cal-
culation of the nth term of the expansion reduces to the
evaluation of ∂nZq/∂λ

n. Let us now proceed to calculate
∂nZq/∂λ

n for the case q < 1. By using the integral repre-
sentation (16) with α = 1/(1− q) we can write

∂Zq

∂λ
=

∂

∂λ

∫ ∞
−∞

dvK<

(
v;

1

1− q

)
Tr exp(−β̄Ĥ). (25)

Employing the following identity [32]

∂ exp(Â)

∂α
=

∫ 1

0

dγ exp(γÂ)
∂Â

∂α
exp[(1− γ)Â] (26)

for Â = −β̄Ĥ and α = λ, we find that

∂Zq

∂λ
= −β Tr

{
ĤI

∫ ∞
−∞

dvK<

(
v;

q

1− q

)
exp(−β̄Ĥ)

}
= −βZqq 〈ĤI〉q. (27)

To obtain the last equation we have used that the or-
ders of the derivative, integral and trace can be com-
muted between them, and also the definition of the q-mean
value (2). Since the above calculation was performed for
arbitrary λ, the first-order correction for Fq becomes

F (1)
q = 〈ĤI〉

(0)
q , (28)

where the superscript (0) indicates that the q-mean value
is calculated for λ = 0.

Next, we calculate the second derivative of Zq. To do
that, we derive (27) with respect to λ

∂2Zq

∂λ2
=−β

∂

∂λ
Tr

{
ĤI

∫ ∞
−∞

dv K<

(
v;

q

1−q

)
exp(−β̄Ĥ)

}
·

(29)
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Again, commuting the orders of the derivative with re-
spect to the integral and to the trace, and using the iden-
tity (26), equation (29) becomes

∂2Zq

∂λ2
= qβ2

∫ ∞
−∞

dvK<

(
v;

2q − 1

1− q

)
× Tr

{
ĤI

∫ 1

0

dγ exp(−γβ̄Ĥ)ĤI exp[−(1− γ)β̄Ĥ]

}
·

(30)

In this expression, let us introduce the completeness rela-
tion in the energy basis between exp(−γβ̄Ĥ) and ĤI to
calculate the trace by using the same basis. In this way, af-
ter the integration in γ and exchanging the order between
integral and the sum over energy states, equation (30) can
be written as

∂2Zq

∂λ2
= −β

∑
n

∑
m6=n

|〈m|ĤI |n〉|
2

∫ ∞
−∞

dvK<

(
v;

q

1− q

)
exp(−β̄Em)− exp(−β̄En)

Em −En

+qβ2
∑
n

|〈n|ĤI |n〉|
2

∫ ∞
−∞

dvK<

(
v;

2q − 1

1− q

)
exp(−β̄En).

(31)

To simplify this expression we use again the equation (16),
and obtain

∂2Zq

∂λ2
= qβ2

∑
n

|〈n|ĤI |n〉|
2 [1− (1− q)βEn](2q−1)/(1−q)

+ β
∑
n

∑
m6=n

|〈m|ĤI |n〉|2

En −Em

(
[1−(1−q)βEm]

q/(1−q)

− [1− (1− q)βEn]q/(1−q)
)
.

(32)

Identifying in this expression the probabilities (6) we
obtain

∂2Zq

∂λ2
= qβ2Z2q−1

q

∑
n

|〈n|ĤI |n〉|
2 [p(En)]

2q−1

+ βZqq
∑
n

∑
m6=n

|〈m|ĤI |n〉|2

En −Em
{[p(Em)]q−[p(En)]q}.

(33)

The previous procedure can also be applied to evaluate
the higher order derivatives of Zq. However, as in the case
of the second derivative, it is important to remark that the
integral representation (16) is restricted to a certain range
of values of the entropic parameter q. Indeed, the integrals
in equation (31) are well defined only for q/(1 − q) > 0.
In general, this restriction is given by q > 1− 1/(n− 1) in
order to calculate ∂nZq/∂λ

n. It must be emphasized that
this limitation is not a specific consequence of the integral

representation. Indeed, this restriction also occurs in the
classical case, where the integral representation was not
employed [20].

Substituting the derivatives (27, 33) with λ = 0 into
(24) we obtain the second-order correction to the free
energy,

F (2)
q =

∂2Fq(0)

∂λ2
= −βq

(
Z(0)
q

)q−1

×
∑
n

p(E(0)
n )

{[
[p(E(0)

n )]q−1〈n|HI |n〉 − 〈HI〉
(0)
q

]2}

−
∑
n

∑
m6=n

∣∣∣〈n |HI |m〉
(0)
∣∣∣2
[
p
(
E

(0)
m

)]q
−
[
p
(
E

(0)
n

)]q
E

(0)
n −E

(0)
m

·

(34)

When H0 and HI commute (in the classical case, for in-
stance) the expression (34) is simpler since the second
term on the right-hand side is null because 〈n |HI |m〉 van-
ishes. Notice that equations (28, 34) are correct for any λ,
but in this case it is necessary to consider the dependence

of | n〉 with λ and substitute E
(0)
n by En. The other cor-

rections for the free energy can be calculated following the
same procedure that was employed in the first two correc-
tions. Moreover, as discussed in the last paragraph, the
interval for possible values of the parameter q becomes re-

duced with the increase of n in F
(n)
q . Summarizing, the free

energy up to the corrections calculated above is given by

Fq(λ) = Fq(0) + λ〈HI〉
(0)
q −

λ2

2
βq
(
Z(0)
q

)q−1

×
∑
n

p(E(0)
n )

{[[
p(E(0)

n )
]q−1

〈n|HI |n〉 − 〈HI〉
(0)
q

]2
}

−
λ2

2

∑
n

∑
m6=n

|〈n |HI |m〉|
2 [p(E

(0)
m )]q − [p(E

(0)
n )]q

E
(0)
n −E

(0)
m

+O
(
λ3
)
,

(35)

where | n〉 is evaluated with λ = 0. It should be mentioned
that, in the case q > 1, the perturbation expansion can
be established and analyzed by using the integral repre-
sentation (10). Of course, it can also be analyzed without
the use of any integral representation [20]; as expected the
results are the same.

4 Generalized Bogoliubov inequality

To study the Bogoliubov inequality, we decompose the
Hamiltonian into two parts,

Ĥ = Ĥ0 + ĤI . (36)

For concrete applications, Ĥ0 is chosen in such way that
it is the Hamiltonian of a solvable model, although for
the present arguments this is not necessary. In the follow-
ing discussion it is more convenient to use a Hamiltonian
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that interpolates continuously between Ĥ0 and Ĥ. This
Hamiltonian is Ĥ = Ĥ0 + λĤI with λ ∈ [0, 1]; therefore,
the results of the previous section can be employed. These
results, together with the general identity

Fq(λ) = Fq(0) + λF ′q(0) +
λ2

2
F
′′

q (λ0), (37)

for free energy are all that is needed to obtain the Bogoli-
ubov inequality in the context of Tsallis statistics. The
prime in (37) indicates the derivative with respect to λ,
and λ0 is chosen in order to satisfy the equality (37).

If F
′′

q (λ0) ≤ 0, then the inequality

Fq ≤ Fq(0) + λF
′

q(0) (38)

follows. Substituting in this inequality the equations
(22, 28), and choosing λ = 1 in order to recover the system
described by the Hamiltonian (36), we obtain that

Fq ≤ F
(0)
q + 〈HI〉

(0)
q . (39)

This inequality is the desired result, i.e., the Bogoliubov
inequality in the Tsallis statistics. As we can see imme-
diately, this inequality is a natural generalization of the
usual one, F≤F (0) + 〈HI〉(0). In other words, the Bogoli-
ubov inequality is form invariant with respect to the pa-
rameter q.

The inequality (39) is different from the one proposed
in [21].This is due to the fact that we have used differ-
ent mathematical inequalities to derive our final results.
The derivation of the generalized Bogoliubov inequality
obtained in this section is based on Feynman’s proof [33].
To complete the demonstration of (39), it is necessary to

verify that F
′′

q (λ0) ≤ 0. This condition occurs indepen-
dently of λ0. In fact, each term of (34) is negative because
the first term clearly is always negative, valid for any λ,
and for the second term, we have: [p(En)]

q ≤ [p(Em)]
q

for
En > Em and [p(En)]q ≥ [p(Em)]q for En < Em.

Before performing any calculation it is important to
make further remarks about the ground state energy
of the exact and the approximate Hamiltonians in the
present context with q < 1 and T > 0. For the pos-
itive exact ground state energy, E0 > 0, there is an
inaccessible temperature region given by the inequality,
1− (1 − q)E0/T0 < 0, i.e., T0 < (1 − q)E0. On the other
hand, if we consider the approximate analysis, it is nec-
essary to consider the ground state energy of the Hamil-

tonian H0, E
(0)
0 . In this case, the inaccessible tempera-

ture is dictated by the inequality T
(0)
0 < (1 − q)E(0)

0 . In
order to overcome this forbidden temperature region in
the approximate analysis, it is convenient to choose H0

in such way that E
(0)
0 = 0. Finally, by taking the limit

T → T
(0)
0 = (1 − q)E(0)

0 with T > T0, F
(0)
q and 〈HI〉

(0)
q

reduce respectively to E
(0)
0 and 〈0|HI |0〉 (|0〉 represents

the ground state of H0). Thus, the Bogoliubov inequality,
equation (39), gives an upper bound for the exact ground

state energy, i.e., E0 ≤ E
(0)
0 + 〈0|HI |0〉. In other words,

the well known quantum variational principle is recovered
in the limit of very low temperature, independently of the
q value. Furthermore, by using the last variational princi-
ple, the exact inaccessible temperature region is given by

the inequality T0 ≤ (1− q)(E(0)
0 + 〈0 | HI | 0〉).

Another important remark is about the new version of
the generalized statistical mechanics which based on the
constraint (3) instead of the constraint (2). The formalism
based on equation (2) was successful in the discussion of
nonextensive systems, however, it contains some unfamil-
iar properties, for instance, 〈1〉q 6= 1 and a dependence on
the choice of origin of the energy spectrum. On the other
hand, the new version does not present these undesirable
properties. It is important to emphasize that the statis-
tical mechanics based on equation (3) retains the main,
with successful, aspects of the old formalism (Eq. (2)).
This conclusion is based on the fact that the canonical
distribution corresponding to the constraint (3) is given by

p′(En) = [1− (1− q)β(En − U
′
q)/g]1/(1−q)/Zq (40)

where U ′q = 〈〈Ĥ〉〉q, g =
∑
n p(En)q and

Z ′q =
∑
n

[1− (1− q)β(En − U
′
q)/g]1/(1−q). (41)

Moreover, if we define β′ as

β′ =
β

g + (1− q)βU ′q
(42)

Equations (40, 41) reduce to equations (5, 6) with β re-
placed by β′. Thus, the main aspects (including calcula-
tional ones) of the old formalism are preserved in the new
one (a complete discussion of this question is developed in
Ref. [26]). In particular, the calculations developed in this
work are a good example of the aspect preserved in the
new formalism. Indeed, this fact justify the utility of
the analysis developed here to study the new version of
the generalized statistical mechanics by employing per-
turbative and variational methods.

5 Application

To illustrate the above inequality we will now discuss a
simple system, namely a one-dimensional harmonic oscil-
lator. We will approximate this system by a particle in
a square well potential. We can calculate the partition
function of the unperturbed system and the q-expectation
value for HI = H −H0 by using (2) and (5). In order to
eliminate inaccessible positive temperatures in the present
example, we choose H and H0 in such way that E0 =

E
(0)
0 = 0. Thus, the Hamiltonian of a one-dimensional

harmonic oscillator is given by

H =
p2

2m
+
m

2
ω2x2 −

~ω
2

(43)
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and of the square well potential is

H0 =
p2

2m
+ V0 −

π2~2

2mL2
, (44)

where

V0 =

{
0 for |x| < L/2
∞ for |x| > L/2.

(45)

By taking the above considerations and by using
(5, 27, 28) we find that

Z(0)
q =

∞∑
n=0

[
1− (1− q)βE(0)

n

]1/(1−q)
, (46)

where E
(0)
n = π~2((n− 1)2 − 1)/(2mL2) and

〈H −H0〉
(0)
q =

∞∑
n=0

(
p(0)
q,n

)q
〈ψn|H −H0|ψn〉

(0)
(47)

with

〈ψn|H −H0|ψn〉
(0)

=
L2mω2

24

[
1−

6

n2π2

]
+
π2~2

2mL2
−
~ω
2
·

(48)

The free energy F
(0)
q can be immediately obtained by sub-

stituting (46) into (8).
The optimum approximation for the free energy is eval-

uated by taking the minimization of F
(0)
q + 〈H −H0〉

(0)
q

with respect to L, and then the result is substituted again

into F
(0)
q + 〈H −H0〉

(0)
q . Figure 1 shows the approximate

and the exact results for the free energy for some typical
values of q. Notice that these curves resemble the curves
of classical free energy [20].

6 Conclusions

In this work we have developed, in a unified way, the gen-
eralized perturbation and variational methods in a nonex-
tensive context by using integral representations. In this
approach, we have obtained a generalization of the Bo-
goliubov inequality which turns out to be form-invariant
for all q > 0. This form-invariance property was first pre-
sented in reference [20], but under more restricted condi-
tions. When compared with the results presented in that
reference, the analysis developed here was extended to the
important case of discrete spectra in the range 0 < q < 1.

In the classical context, the higher derivatives of Zq
in relation to λ lead to the decrease of the range of the
possible q values [20]. This reduction is governed by the
inequality q > 1− 1/(n− 1), where n is the order of per-

turbation term, F
(n)
q . The application conditions of the

integral representation for q < 1 lead consistently to the
same decrease in the range of q values. Therefore, this re-
striction in the possible values of q is not a consequence of
using the integral representation employed here, but it is a

Fig. 1. Free energy vs. temperature for typical values of q. The
exact and approximate free energy are represented by dashed
and solid lines, respectively.

feature of the theory. In summary, the results obtained in
this work unify the perturbation and variational methods
in the classical (continuous spectra) and quantum (dis-
crete spectra) contexts. Moreover, the present arguments
reinforce the power of the integral representations which
can be used to solve a series of problems in Tsallis statis-
tics. Finally, we believe that the present approaches could
be useful in the discussion of the anomalies currently asso-
ciated with nonextensive systems by using the generalized
statistical mechanics based on unnormalized (Eq. (2)) or
normalized (Eq. (3)) constraints.

We also thank CNPq and PRONEX (Brazilian agencies) for
partial financial support.
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